Binary non-linearization of Lax pairs of Kaup-Newell soliton hierarchy
نویسندگان
چکیده
منابع مشابه
A Coupled AKNS-Kaup-Newell Soliton Hierarchy
A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of...
متن کاملIntegrable counterparts of the D-Kaup-Newell soliton hierarchy
Two integrable counterparts of the D-Kaup–Newell soliton hierarchy are constructed from a matrix spectral problem associated with the three dimensional special orthogonal Lie algebra soð3;RÞ. An application of the trace identity presents Hamiltonian or quasiHamiltonian structures of the resulting counterpart soliton hierarchies, thereby showing their Liouville integrability, i.e., the existence...
متن کاملRelativistic DNLS and Kaup–Newell Hierarchy
By the recursion operator of the Kaup–Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit c→∞ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit representation of the linear problem for this equation becomes possible due to notions of the q-...
متن کاملar X iv : s ol v - in t / 9 60 80 03 v 1 6 A ug 1 99 6 Binary Nonlinearization of Lax pairs of Kaup - Newell Soliton Hierarchy
— Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense,...
متن کاملBinary Nonlinearization of Lax Pairs
A kind of Bargmann symmetry constraints involved in Lax pairs and adjoint Lax pairs is proposed for soliton hierarchy. The Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative finite dimensional integrable Hamil-tonian systems and explicit integrals of motion may also be generated. The corresponding binary nonlinearization procedure leads to a sort of involutive sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Il Nuovo Cimento B Series 11
سال: 1996
ISSN: 1826-9877
DOI: 10.1007/bf02743224